> 681. Thermodynamic Properties of Organic Oxygen Compounds. Part IX. ${ }^{1}$ The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols.

By D. Ambrose and R. Townsend.
The critical temperatures, pressures, and densities of the two propyl and four butyl alcohols have been determined, together with their vapour pressures in the range from 5 atm . up to the critical point. Critical temperatures were determined by the visual sealed-tube method; pressures, including critical pressures, were determined in a glass apparatus based on the original design of Andrews; and orthobaric densities in the range 20$120^{\circ}$ below the critical (from which the critical densities were found) were determined from volumetric measurements made on sealed tubes. Equations are presented for the variation with temperature of the vapour pressures and the orthobaric densities.

In continuation of previous work on critical properties, ${ }^{2}$ a study has been made of the two propyl and four butyl alcohols (including measurements of critical pressures and densities in addition to the temperatures which alone were measured in the earlier work). Critical temperatures were determined by the visual method already described. ${ }^{2}$ Critical pressures were determined in an apparatus similar to that originally used by Andrews ${ }^{3}$ and subsequently developed by Young ${ }^{4}$ and by Kay, ${ }^{5}$ but only the upper part of the experimental tube was maintained at an elevated temperature, the lower part remaining at lower temperatures. The experiment was arranged so that the pressure was measured while the disappearance and the reappearance of the meniscus were observed visually, and the method was essentially a refinement of that used by Altschul. ${ }^{6}$ Both critical temperatures

[^0]and critical pressures could have been obtained simultaneously in this way, but we preferred to retain our original method for critical temperatures because its accuracy had already been well demonstrated, and our method of temperature measurement (by means of a Leeds and Northrup platinum resistance thermometer) was more accurate than that available for use in the pressure experiment. At lower temperatures the apparatus was used for the determination of vapour pressures, and equations for the vapour-pressure curves have been calculated. Critical densities were obtained by application of the law of rectilinear diameters to the orthobaric densities measured over a range of temperature by the method of Hebert, McDuffy, and Secoy. ${ }^{7}$ The approximately linear relation ${ }^{8}$ between ($\rho_{L}-\rho_{V}$) and the cube root of $\left(t_{c}-t\right)$ was demonstrated (where $\rho_{L, \rho_{V}}$ are the liquid and vapour densities and t_{c}, t are the critical temperature and the temperature of observation, respectively).

Experimental

Materials.-The alcohols had been prepared in this laboratory, by purification of commercially available samples, for use in the current programme for determining their thermodynamic properties. ${ }^{1}$ Their purities, determined by means of gas-liquid chromatography and melting- or freezing-point measurements, are listed in Table 1. However, because alcohols

Table 1.
Critical properties.

AlcoholPropyl	Critical temperatures (${ }^{\circ} \mathrm{C}$)				Critical pressures (atm.)		
	obs.	lit.	calc.*		obs.	lit.	calc.*
	263.56°	$263.7^{\circ} 4$	$264 \cdot 5^{\circ}$		51.02	$50 \cdot 16{ }^{4}$	51.4
Isopropyl	235.259	$235.6 \dagger$	$247 \cdot 3$		47.02		$53 \cdot 1$
Butyl	$289 \cdot 83$	$\begin{aligned} & 286 \cdot 95 \ddagger \\ & 288 \cdot 0 \dagger \\ & 289 \cdot 74 \S \end{aligned}$	$283 \cdot 1$		43.55	$\left\{\begin{array}{l}43 \cdot 58 \text { § } \\ 48 \cdot 60 \ddagger\end{array}\right.$	$43 \cdot 3$
Isobutyl	276.70 T	274.59 §	$273 \cdot 1$		$42 \cdot 39$	$42 \cdot 38$ §	$44 \cdot 5$
s-Butyl	$262 \cdot 80$		261.3		$41 \cdot 39$		$44 \cdot 5$
t-Butyl	233.0		236.9		$39 \cdot 20$		$44 \cdot 5$
	Purities	Critical densities (g./ml.)					
	(moles \%)	obs.		lit.		calc.*	ρL at 20°
Propyl..	99.94	0.2754		$0.273{ }^{4}$		0.269	0.8035
Isopropyl	99.96	0.2727				0.274	0.7854
Butyl	99.94	$0 \cdot 2699$	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	$0.267 §$ $0.270 \pm$		$0 \cdot 266$	$0 \cdot 8096$
Isobutyl	99.93	$0 \cdot 2722$		0.269 §		$0 \cdot 270$	0.8020
s-Butyl	99.95	0.2755				$0 \cdot 270$	0.8129
t-Butyl	99.96	$0 \cdot 2700$				$0 \cdot 280$	$0 \cdot 7792\left(27^{\circ}\right)$

* Calc. by Lydersen's method (see ref. 25). \dagger Fischer and Reichel, Mikrochem., 1943, 31, 102. \ddagger Mann and Shemilt, J. Chem. Phys., 1955, 28, 1370. § Kay and Donham, Chem. Eng. Sci., 1955, 1, 1.
TI Kreglewski, Bull Acad. polon. Sci., Cl. III, 1954, 2, 191.
in contact with air pick up water so easily, they were dried by storing them over calcium hydride for several days before transference under a vacuum into the experimental tubes. There was visible reaction with the calcium hydride, and experience showed that the treatment was necessary if consistent vapour- and critical-pressure results were to be obtained.

Critical Temperatures.-The oven, temperature measurement, filling of tubes, and method of observation have been described. ${ }^{2}$

Vapour Pressures and Critical Pressures.-The apparatus (Fig. 1), an adaptation of that used by Kay, ${ }^{5}$ consisted of a vertical glass tube A (3 mm . internal diameter, sealed at its upper end) which was held in a metal fitting B and communicated via a mercury-filled U and another glass tube C (in which the oil-mercury interface was located) with an oil-operated, dead-weight piston-gauge (Budenberg). The tube A was heated in the electric oven originally designed for the critical-temperature measurements. The sample was confined over mercury, and the

[^1]position of the sample-mercury interface could be adjusted by means of the screw press D. This interface (the position of which could be determined accurately by means of a cathetometer) was in the part of tube A which extended below the oven, so that no mercury was raised above room temperature and there was therefore no need to correct at higher temperatures for the mercury-vapour pressure. The pressure exerted by the vapour was the sum of the barometric pressure, that determined from the gauge, and the hydrostatic heads of oil, mercury, and alcohol. (The experimental tube was of uniform bore and the hydrostatic head of the alcohol was therefore independent of the temperature; it was equivalent to the length of the column of liquid at room temperature.) The oven was suspended so that it could be raised clear of tube A.

The experimental tube was filled with an appropriate amount of the substance under study, by vacuum-manipulation in the apparatus shown in Fig. 2. The tube A was held in a larger tube designed so that the assembly could be inverted by rotation about a conical joint E when filling was complete, and air could be admitted to the system so that the remainder of the tube was filled with mercury. When filled, tube A was removed from the filling apparatus and

Fig. 1. Vapour pressure and critical pressure apparatus.

A, experimental tube; B, glass-to-metal couplings; C , sight glass for mercury-oil interface; D, screw press for adjustment of mercury level.

Fig. 2. Filling apparatus for vapour pressure tubes.
A, experimental tube; B, glass-to-metal coupling; E, conical joint to allow rotation of experimental tube.
inserted in the metal adapter B (Fig. 1) after the washer and elastomer sealing-ring had been moved to the end of the tube. The swelling at the end of A prevented it from being ejected under pressure from B. During the transfer from one apparatus to the other, care was taken that no bubble of air was trapped, the nut was then screwed down and the system was compressed to between 50 and 60 atm . so that a check could be made for the absence of leaks. The temperature of the oven was adjusted so that it was just below the critical, and the oven was lowered over the tube. As the tube became warm the screws on the mercury and oil presses were adjusted to allow for thermal expansion of the experimental liquid and to adjust the position of the two mercury menisci conveniently for observation. The pressure was reduced so that a vapour-liquid meniscus, visible through the window in the oven, was formed in the tube. The piston-gauge was balanced and was maintained in balance by addition of weights as the temperature was raised through the critical temperature, at which the meniscus disappeared with the same characteristic phenomena as are observed in sealed tubes. The temperature was then lowered, an observation was made as the meniscus reappeared, and the process was repeated several times. The difference in pressures at disappearance and reappearance was about 0.01 atmosphere.

After the critical pressure had been determined, similar experiments were carried out at
fixed lower temperatures to determine the corresponding vapour pressures, the meniscus being adjusted on each occasion, as before, so that it was visible in the window of the oven. If the weights on the piston-gauge did not balance the pressure exactly, an indication of this lack of balance was given by the movement of the meniscus up or down.

With the butyl alcohols, decomposition at temperatures in the higher range was apparent from a gradual rise in pressure. To minimise errors due to this, results for all compounds were obtained on more than one filling of the sample tube, and after the critical pressure determinations, results were obtained in the lower range of temperatures before the higher. The design of apparatus was suitable for work on slightly unstable compounds since the oven could be raised at all times except when an experiment was actually in progress, and there was no unnecessary heating of the sample.

At temperatures for which the vapour pressure is no more than 10 atm . prolonged superhea ing is liable to occur, and the vapour bubble may not be formed at the top of the tube even when the balancing pressure is reduced to atmospheric or less. (Occurrence of this superheating is a good indication that the sample has been thoroughly freed from air.) The unpredictable conclusion of this condition occurs with explosive suddenness which may ruin the experiment. The difficulty was dealt with by flaming the top of the tube until vapour was formed against a pressure of a few atmospheres, and then lowering the oven immediately before the tube had cooled. Care had to be taken that faulty manipulation during the experiment did not at any time cause complete collapse of the vapour bubble since the superheating would inhibit its formation.

The standard instrument for the temperature measurements was a platinum resistance thermometer used with a Mueller bridge (Leeds and Northrup). This thermometer, however, could not be accommodated in the apparatus in addition to the vapour-pressure tube, and temperatures were measured with a small thermometer, designed to fit in the space available and made in the laboratory. Since the performance of this thermometer proved disappointing, it was frequently calibrated in situ against the Leeds and Northrup thermometer which was inserted in the oven in place of the experimental tube so that the resistance element occupied the position of interest, i.e., was in the window. The piston and cylinder assemblies for the pressure measurement had been calibrated in the National Physical Laboratory (N.P.L.), and were subsequently used for the determination of the vapour pressure of carbon dioxide at 0.010° (i.e., the vapour pressure when the bulb was inserted in a water triple-point cell ${ }^{9}$). The mean value obtained, $34 \cdot 403 \mathrm{~atm}$. (standard deviation of seven determinations ± 0.004 atm .) is in good agreement with a provisional standard value, $34 \cdot 400 \mathrm{~atm}$., recently obtained in the N.P.L.

Crthobaric Densities.-In the method adopted for the determination of orthobaric densities (an adaptation of the classical one for making this measurement by observations on sealed tubes) observations are made on a series of tubes, instead of on two only, and the results are averaged overall.

Consider the effect of temperature upon the proportion occupied by liquid of a sealed tube containing the substance under study. If F is the fraction occupied by liquid, V is the internal volume of the tube, m is the mass of substance present, ρ_{V}, ρ_{L} are the densities of vapour and liquid, α is the cubical coefficient of expansion of glass, and the subscripts o and t refer to room temperature and t°, respectively, then

$$
\text { The volume of liquid }=V F_{0}, V F_{t}[1+\alpha t] \text { at the corresponding temperatures, }
$$

and

$$
\begin{align*}
m & =V\left[F_{o \rho_{L o}}+\left(1-F_{o}\right) \rho_{V_{0}}\right] \\
& =V[1+\alpha t]\left[F_{t \rho_{L t}}+\left(1-F_{t}\right) \rho_{V t}\right] . \tag{1}\\
F_{o}\left(\rho_{L o}\right. & \left.-\rho_{V o}\right)+\rho_{V o}=(1+\alpha t)\left[F_{t}\left(\rho_{L t}-\rho_{V t}\right)+\rho_{V t}\right] . \tag{2}
\end{align*}
$$

For the materials here examined $\rho_{\text {vo }} \ngtr 0.0001$ and may be ignored.
Therefore

$$
\begin{equation*}
F_{o}=[\mathbf{1}+\alpha t]\left[F_{t}\left(\frac{\rho_{L t}-\rho_{V t}}{\rho_{L o}}\right)+\left(\frac{\rho_{V t}}{\rho_{L o}}\right)\right] . \tag{3}
\end{equation*}
$$

[The volume correction for thermal expansion at 300° is about $3 \times 10^{-3} \mathrm{~V}$; that due to an internal pressure of 50 atm . is about $2.5 \times 10^{-4} \mathrm{~V}$ and may be ignored.] If a series of tubes is taken and

[^2]3618 Ambrose and Townsend: Thermodynamic Properties of
the movements of the menisci are measured as the temperature is raised, so that F_{t} can be plotted against F_{o}, then $\rho_{V t}$ and $\rho_{L t}$ can be found from the values of F_{o} at $F_{t}=0,1$ if $\rho_{L o}$ is known.

The tubes used were about 15 cm . long, and were made from glass tubing of 3 mm . precision bore. Up to ten were filled with each substance by normal vacuum-manipulation, F_{o} being varied between 0.15 and 0.65 , as far as possible in approximately equal steps. The tubes were carefully prepared so that their lower ends were approximately hemispherical and distortion of the cylindrical wall was kept to a minimum. To determine F_{0}, the array of tubes was set up vertically with the hemispherical end downwards in a beaker of water (the temperature of which was measured), and measurements on each tube in turn were made with a cathetometer of the height of the liquid column h (measured from the lower end of the internal cavity to the bottom of the meniscus) and of the meniscus h^{\prime}. Then the volume of liquid V_{L} is given by

$$
\begin{equation*}
V_{L}=\pi h^{\prime}\left(h^{\prime 2}+3 r^{2}\right) / 6+\pi r^{2}(r-h)+2 \pi r^{3} / 3 \tag{4}
\end{equation*}
$$

where r is the radius of the tube. The tubes were inverted, and the volume of vapour V_{V} in each was determined in a similar way.

Then

$$
\begin{equation*}
V=V_{L}+V_{V}, \text { and } F_{o}=V_{L} /\left(V_{L}+V_{V}\right) \tag{5}
\end{equation*}
$$

Since the value of F_{o} is used in the calculation for every experiment, two or three determinations of it were made (by more than one observer) and the mean was taken. The standard deviation from the means of 56 determinations (24 tubes) amounted to $0 \cdot 0005$.

In the calculation of V and F the nominal value of the radius of the tubing was used, and no check was made of its accuracy; as long as the tube is of uniform bore the exact value of the radius is not important except in the evaluation of the meniscus and end corrections which are themselves small. If reproducible results were to be obtained in the determination of V it was important that no liquid should be trapped at the upper ends of the tubes. Each tube was, therefore, heated slightly at the upper end before it was put in the water-bath, and no undue delay was allowed before observations were made. At higher temperatures liquid did not persist at the tops of the tubes, except in one set which was made from tubing of 2 mm . bore. With these tubes there was a clearly defined temperature below which surface tension was sufficient to hold a column of liquid at the top; measurements were unsatisfactory and a further set of tubes of 3 mm . bore was used.

With the internal volume known, F_{t} at any higher temperature can be found by measuring the liquid or vapour volume only. The tubes, placed 6 at a time in a holder which could be rotated, were heated in a vapour jacket (containing decalin, Dowtherm, or ethyl phthalate, according to the temperature range required). The jacket had been lagged, and windows cut in the lagging for observation and illumination so that each tube in turn could be examined. Readings were taken at temperatures ranging from about 120° to between 10° and 20° below the critical temperature. The temperature was adjusted by varying the pressure in the vapour jacket (which was attached to a manostat), and did not vary during an experiment by more than $0 \cdot 1^{\circ}$. Temperatures were measured by means of a laboratory-made platinum resistance thermometer which was checked against the Leeds and Northrup instrument.

The tubes were immersed directly in the vapour and were therefore examined through only one thickness of glass so that no unnecessary distortion was introduced. The method, however, subjected the tubes to a thermal shock at the beginning of each experiment as the level of the condensing vapour rose up the jacket, and at first many exploded. The failures occurred at the points of sealing-off of the tube, and most breakages were prevented when the tubes were put in the vapour with the final seals downwards. In this way they did not have to withstand the thermal shock and high pressure at the same time. The tubes of t-butyl alcohol, however, nearly all burst eventually, no doubt because of thermal decomposition which caused excessive pressure; no effect on the density values obviously attributable to decomposition was observed.

The behaviour of individual tubes as the temperature is raised may be seen from Fig. 3. In those which contain more than the critical filling the liquid expands at an increasing rate as the temperature is increased until a point is reached at which liquid completely fills the tube. The overall effect is the same in reverse with the tubes which are underfilled, but two competing effects are apparent at first: the expansion of the liquid and its evaporation as the vapour
pressure rises. At some values of F_{o} the amount of liquid first increases because of the former before it decreases as a result of the latter.

When F_{o} was plotted against F_{t}, excellent straight lines were obtained (normally with four or five points on each) and the pattern over a range of temperatures is shown in Fig. 4. After a preliminary examination, as a result of which some tubes were rejected because the residuals of the points obtained from them were consistently high (suggesting that they were distorted

Fig. 3. Effect of temperature on sealed tubes filled to varying degrees. Plot of F_{t} against temperature for various tubes filled with propyl alcohol.

Fig. 4. Plot of F against F_{o} for isopropyl alcohol.
and that the assumption of uniform bore was incorrect), the best line was found by a least-squares treatment. In few instances were the final residuals greater than $\mathbf{0 . 0 0 1 0}$. From the intercepts the values of ρ_{L} and ρ_{V} were calculated from the known densities at room temperature.

Abstract

Results Critical Properties.-The values obtained for the critical properties are given in Table 1. As in our earlier work, the critical temperatures are mean values of a series of observations on the disappearance and reappearance of the meniscus as the temperature of each tube was raised and then lowered. In most instances the range of temperature over which the phenomena occurred did not exceed a few hundredths of a degree but, taking all factors into account, we would place an uncertainty of $\pm 0 \cdot 1^{\circ}$ on the final figures. That for t-butyl alcohol must be excepted since there was lack of agreement in the results obtained from different tubes; and the uncertainty in this instance must be put at $\pm 0 \cdot 2^{\circ}$.

The critical pressure of each of the compounds was determined several times and, for most of them, with more than one filling of the experimental tube. The range of results was about 0.1% of the pressure, and we consider that the mean value given is within $\pm 0.1 \%$ of the true value. Wherever possible, values of the critical properties taken from the literature have been quoted for comparison; the good agreement between our results and those of Kay (which has been reported earlier ${ }^{2}$ for the critical temperatures of other compounds) now extends to the critical pressure measurements on n-butyl and isobutyl alcohol. ${ }^{10}$ In addition, there is good agreement between our value and Young's value for the critical temperature of propyl alcohol, ${ }^{4}$ but we consider his pressure value too low (that Young's values for vapour pressure tend to be low has been confirmed by other workers ${ }^{11,12}$). This work was started with measurements of the critical pressure of benzene; the value obtained, 48.36 atm ., may be compared with the literature values, $47 \cdot 9,48 \cdot 34,,^{12} 48 \cdot 7,{ }^{13}$ and $48 \cdot 28 .{ }^{14}$ It was finished with measurements of the critical pressure of fluorobenzene; the value obtained, 44.95 atm ., may be compared with that reported from the U.S. Bureau of Mines, ${ }^{15} 44.910 \mathrm{~atm}$., for measurements on another sample of the same batch of fluorobenzene.

It is somewhat difficult to suggest a precision for the values of the critical densities; for propyl, butyl, and isobutyl alcohol they are some 1% higher than the results of Young ${ }^{4}$ and of Kay and Donham. ${ }^{10}$ The critical density is obtained by extrapolation of the rectilinear diameter to the critical temperature, and it has been pointed out by Benson and Copeland ${ }^{16}$ that there is no valid reason why the extrapolation should be based on orthobaric densities (as is customary and has been done in this work) in preference to volumes. Exact measurements reveal, too, that the rectilinear diameter is in fact curved, and the extrapolation may be subject to considerable personal variation. It seems, therefore, that values purporting to be of high accuracy are not meaningful, but the four figures have been retained for substitution in the equations given in Table 3 for the orthobaric densities.

Vapour Pressures.-The experimental results are given in Table 2, together with their residuals from the calculated values, expressed as $\Delta \log p$, and the constants of the equations used for the calculation ($\Delta \log p=0.0004$ corresponds to a difference in pressure of 0.1%). A few measurements were made at pressures below 5 atm . but the apparatus was not reliable in this region.

If experimental results are to be fitted by an equation right up to the critical point, the equation must be capable of reproducing the reversal of curvature which is revealed at a reduced temperature of about $0 \cdot 8$ when $\log p$ is plotted against $1 / T$ on a large scale. The equation of Frost and Kalkwarf ${ }^{17}$ fulfills this requirement but, since it is not explicit in either p or T, it is inconvenient to use. In addition, the equation did not fit the results for propyl or isopropyl alcohol over the whole range without systematic deviations and we therefore adopted the following empirical equation, which fitted the results and from which the pressure p may be calculated, without difficulty, by simple substitution for the temperature, t :

$$
\begin{equation*}
\log p=A^{\prime}-B /(C+t)-D t+E(t-F)^{3} \tag{6}
\end{equation*}
$$

A^{\prime}, B, C, D, E, and F are constants of which B and C are those found for the Antoine equations to fit the vapour-pressure results at lower temperatures. ${ }^{1}$ The remaining constants were found by first plotting the results in the form of the residual of $\log p$ from the value calculated for the experimental temperature by means of the low-pressure Antoine equation. The curve of the residual was cubic in form and was solved graphically, the constants being adjusted so that the correcting terms became zero at the temperature $G\left(20-30^{\circ}\right.$ above the b. p.) at which the residual was zero. Below G° the normal Antoine equation is to be applied.

At the beginning of the work we made measurements on benzene and (in a silica tube) on water, and at its conclusion on water and fluorobenzene. The internal consistency of the results for benzene was at least as good as that found for the alcohols, but benzene in fact was

[^3]Table 2.
Vapour pressures (atm.) of alcohols. (Temp. in ${ }^{\circ} \mathrm{C} ; \Delta \log p=\log p_{\text {obs. }}-\log p_{\text {calc. }}$.)

Temp.	$\stackrel{p}{p}$	$\Delta \log p$	Temp.	p Isoprop	${ }_{\text {yl }}^{\Delta \log p}$	Temp.	$\begin{gathered} p \\ \text { Butyl } \end{gathered}$	$\Delta \log p$	Temp.	Isobutyl	
132.31°	3.286	0.0009	121.90°	3.983	-0.0006	146.19°	2.514	0.0013	149.49°	3.753	$0 \cdot 0020$
138.62	3.952	0.0008	122.08	3.997	-0.0030	155.96	$3 \cdot 313$	0.0010	159.92	4.921	0.0001
138.97	3.968	-0.0018	122.25	$4 \cdot 044$	0.0014	$160 \cdot 62$	3.770	$0 \cdot 0024$	$170 \cdot 29$	6.353	0.0001
147.52	$5 \cdot 062$	$0 \cdot 0006$	131.94	5•326	-0.0010	166.09	$4 \cdot 333$	$0 \cdot 0008$	173.25	6.804	-0.0004
$148 \cdot 17$	5.123	-0.0018	132.08	5•349	-0.0008	$166 \cdot 13$	$4 \cdot 337$	$0 \cdot 0008$	179.75	7.896	-0.0005
157.87	$6 \cdot 605$	-0.0014	140.09	$6 \cdot 633$	-0.0023	$170 \cdot 82$	$4 \cdot 865$	-0.0008	185.79	9.019	-0.0006
158.35	$6 \cdot 689$	-0.0012	142.42	$7 \cdot 096$	$0 \cdot 0004$	175.48	$5 \cdot 477$	0.0009	191.02	10.095	0
$164 \cdot 41$	$7 \cdot 764$	-0.0016	$142 \cdot 49$	$7 \cdot 094$	-0.0005	186.60	$7 \cdot 099$	0.0006	195•16	10.982	-0.0007
167.86	$8 \cdot 446$	-0.0011	153•14	$9 \cdot 282$	-0.0003	189.49	$7 \cdot 545$	-0.0010	$200 \cdot 42$	12.236	0.0001
168.76	$8 \cdot 648$	-0.0001	153•17	$9 \cdot 294$	-0.0006	197-16	8.939	$0 \cdot 0002$	202.74	12.786	0.0041
178.51	10.802	-0.0009	158.34	$10 \cdot 557$	$0 \cdot 0012$	$199 \cdot 40$	$9 \cdot 354$	-0.0006	$205 \cdot 86$	13.598	-0.0003
178.56	10.811	-0.0010	158.37	$10 \cdot 510$	-0.0011	$207 \cdot 81$	11.138	0.0003	212.38	$15 \cdot 406$	0.0002
179.18	10.974	-0.0005	165•10	12.302	-0.0004	$209 \cdot 17$	11.436	-0.0001	$223 \cdot 16$	18.696	-0.0008
188.38	13.398	-0.0005	$165 \cdot 21$	12.337	-0.0002	217.72	$13 \cdot 293$	$0 \cdot 0002$	223.17	18.758	0.0006
189.16	13.619	-0.0005	168.57	13.328	$0 \cdot 0006$	$219 \cdot 15$	$13 \cdot 861$	-0.0005	226.43	19.825	-0.0002
198.87	16.616	-0.0006	168.75	$13 \cdot 426$	0.0020	228.91	$16 \cdot 612$	$0 \cdot 0001$	$232 \cdot 00$	21-807	-0.0004
199.67	16.872	-0.0009	180.03	17-024	-0.0003	229.32	16.706	-0.0006	239.77	24.845	0
209.48	20.438	-0.0002	$180 \cdot 11$	$17 \cdot 113$	0.0021	$239 \cdot 67$	19.969	-0.0018	$242 \cdot 32$	$25 \cdot 871$	-0.0004
$210 \cdot 45$	20.805	-0.0003	190.06	20.941	0.0011	239.91	$20 \cdot 177$	0.0010	$250 \cdot 12$	$29 \cdot 347$	$0 \cdot 0002$
221.39	$25 \cdot 445$	-0.0002	190.08	20.904	$0 \cdot 0002$	249.77	23.733	0	$252 \cdot 45$	$30 \cdot 392$	-0.0003
221.60	25.585	$0 \cdot 0005$	205•16	27.919	$0 \cdot 0006$	250.05	23.810	-0.0006	$252 \cdot 45$	$30 \cdot 413$	-0.0001
239.95	34.991	-0.0005	216.42	34-143	0	$259 \cdot 70$	27.816	-0.0001	$263 \cdot 11$	35.783	-0.0003
251.93	$42 \cdot 478$	-0.0006	$220 \cdot 15$	36-435	-0.0001	$260 \cdot 08$	27.909	-0.0013	$266 \cdot 20$	37.504	0.0001
263.56	51.023	0.0003	227.04	$40 \cdot 978$	-0.0004	$269 \cdot 62$	$32 \cdot 410$	-0.0001	269.92	$39 \cdot 676$	$0 \cdot 0007$
			$235 \cdot 09$	$47 \cdot 019$	$0 \cdot 0009$	$277 \cdot 49$	$36 \cdot 464$	0.0002	$274 \cdot 56$	$42 \cdot 386$	0
						283.74	$40 \cdot 006$	0.0009			
						$289 \cdot 83$	43.554	0			
s-Butyl			s-Butyl			t-Butyl			t-Butyl		
148.96	$4 \cdot 681$	-0.0011	201•10	14.844	$0 \cdot 0003$	103.27	2.131	-0.0017	153.68	8.729	0
$150 \cdot 44$	$4 \cdot 845$	-0.0028	211.01	17.772	-0.0006	$115 \cdot 41$	3.150	0.0001	$159 \cdot 67$	10.033	$0 \cdot 0004$
159.68	$6 \cdot 146$	0.0004	211.30	$18 \cdot 115$	0.0054	125-40	$4 \cdot 217$	-0.0004	170.70	12.733	$0 \cdot 0001$
$160 \cdot 05$	$6 \cdot 161$	-0.0014	211.89	18.530	0.0106	$135 \cdot 63$	$5 \cdot 559$	-0.0016	172.78	13.330	$0 \cdot 0011$
170.06	7.838	$0 \cdot 0007$	221-44	$21 \cdot 408$	$0 \cdot 0008$	146.22	$7 \cdot 306$	$0 \cdot 0002$	233.00	39-200	0
$170 \cdot 37$	$7 \cdot 840$	-0.0022	221.81	22-466	0.0115						
179.94	$9 \cdot 800$	0.0037	232-39	25•762	0.0014						
$180 \cdot 53$	$9 \cdot 812$	-0.0011	$242 \cdot 19$	30•199	$0 \cdot 0016$						
$190 \cdot 11$	12.005	$0 \cdot 0009$	252.76	35.557	$0 \cdot 0006$						
190.79	$12 \cdot 155$	$0 \cdot 0004$	$262 \cdot 80$	41-392	0						
200.79	14.768	0.0007									

Constants of vapour pressure equations.

$$
\begin{aligned}
\log _{10} p(\operatorname{atm} .) & =A^{\prime}-\frac{B}{C+t}-D t+E(t-F)^{3}, t>G \\
& =A-\frac{B}{C+t}, t<G .
\end{aligned}
$$

Alcohol	A	A^{\prime}	B	C	$10^{4} \mathrm{D}$	$10^{8} \mathrm{E}$	F	G
Methyl*	$5 \cdot 50947$	5.54194	1761.635	$255 \cdot 24$	$3 \cdot 80$	1.535	145°	$64.5{ }^{\circ}$
Ethyl*	$4 \cdot 33256$	$5 \cdot 37917$	1652.05	231.48	$4 \cdot 29$	1.195	167	102
Propyl	$4 \cdot 84830$	4.90882	1428.977	197.585	$4 \cdot 19$	$2 \cdot 43$	195	120
Isopropyl	4.84508	4.90388	$1351 \cdot 627$	196.726	$4 \cdot 72$	3.095	170	112
Butyl	$4 \cdot 48681$	4.53285	1307.445	$173 \cdot 670$	$2 \cdot 84$	1.83	210	140
Isobutyl	$4 \cdot 41833$	$4 \cdot 46403$	$1233 \cdot 095$	171-197	2.91	$2 \cdot 27$	200	138
s-Butyl	$4 \cdot 32347$	$4 \cdot 37118$	1158.543	168.452	$3 \cdot 24$	$3 \cdot 55$	184	130
t-Butyl	$4 \cdot 32535$	$4 \cdot 35499$	1094.341	170.658	$2 \cdot 60$	2.095	155	102

* The figures for the vapour pressures of methanol and ethanol, which can be fitted by the same type of curve, are included for comparison. The methanol curve is based on the results of Dever, Finch, and Grunwald (J. Phys. Chem., 1955, 59, 668) at low pressures, of Wojciechowski (J. Res. Nat. Bur. Stand., 1936, 17, 721) for the boiling point, and of Kay and Donham ${ }^{10}$ for higher pressures. The ethanol curve is based on the A.P.I. Antoine equation and Young's results ${ }^{4}$ at higher pressures.
not a good standard for use in checking the apparatus because of discrepancies between published results ($\sim 1 \%$ of the pressure); the present results were slightly higher than those of the most recent investigators ${ }^{13}$ (maximum deviation, 0.3% of the pressure). The only substance which can be taken as a standard with confidence is water; measurements over the range $150-270^{\circ}$ (5-55 atm.) agreed, within 0.1% of the pressure, with the values taken from the table published by Osborne and Meyers. ${ }^{18}$ Two vapour-pressure measurements on fluorobenzene at 200.23° and $251.46^{\circ}(13.23,28.33 \mathrm{~atm}$.) were about 0.5% higher than the published values. ${ }^{15}$

Of the alcohols themselves, there are results for three which may be compared with this work. Those of Young for propyl alcohol ${ }^{4}$ are lower by about 1% of the pressure throughout the range from 120° to the critical; those of Kay and Donham ${ }^{10}$ for butyl alcohol are lower by about 0.2% between 190° and 260°, and for isobutyl alcohol by about 0.5% between 220° and 260° (in both instances, as remarked above, agreement was closer for the critical pressure itself.) Vapour pressures of butyl alcohol have also been measured by Shemilt, Esplen, and Mann; ${ }^{19}$ up to 270° these results are about 2% greater than those of the present work and between 270° and the critical the difference increases to 10%. The shape of the vapourpressure curve in the critical region given by the results of Shemilt et al. is not confirmed by any other results we have examined and we believe they are in error. The fact that Young's values for vapour pressures tend to be low, the fair agreement existing between the present results and those of Kay and Donham for isobutyl alcohol, and the good agreement for butyl alcohol, all provide good support for the accuracy of our methods.

Decomposition of the butyl alcohols did not bar consistent results provided the procedure outlined in the Experimental section was followed, except that t-butyl alcohol became too unstable above 235°, and there are no experimental values between that temperature and the critical. Surprisingly, a reasonable value for the critical pressure was obtained (i.e., it remained constant for an hour or more) ; presumably this was because two opposing tendencies, the rise in pressure due to decomposition and the fall in critical temperature with consequent fall in pressure, almost exactly counter-balanced each other. A satisfactory interpolation, based on the form of equation used for the other alcohols, was therefore possible. The results for s-butyl alcohol are also less reliable than for the remaining alcohols because of decomposition, although with this substance experimental measurements were made right up to the critical temperature.

Orthobaric Densities.-If ρ_{L}, ρ_{V} are the orthobaric densities of liquid and vapour, and t, t_{c} are respectively the temperature of the observation and the critical temperature, it is found that ($\rho_{L}-\rho_{V}$) is approximately proportional to the cube root of $\left(t_{c}-t\right)$. This relation provides a check on the consistency of results since a smooth, and nearly linear, curve is obtained if ($\rho_{L}-\rho_{V}$) is plotted against $\left(t_{c}-t\right)^{\frac{2}{2}}$. The line passes through the origin if the value of t_{c} used is correct. For exact representation of results the following equations were used:

$$
\begin{align*}
& \rho_{L}+\rho_{V}=2 \rho_{c}+a\left(t_{c}-t\right)-b\left(t_{c}-t\right)^{2} \tag{7}\\
& \rho_{L}-\rho_{V}=c\left(t_{c}-t\right)^{\frac{1}{2}}-d\left(t_{c}-t\right)^{2} \tag{8}
\end{align*}
$$

ρ_{c} is the critical density and a, b, c, and d are constants for each substance. In Table 3 are listed the constants of these equations together with the experimental values on which they are based and the residuals of ($\rho_{L}-\rho_{V}$) and ($\rho_{L}+\rho_{V}$) from the calculated values. Jones and Bowden ${ }^{20}$ have recommended the use of a fractional exponent other than one-third for expressing the temperature dependence of ($\rho_{L}-\rho_{V}$); this form of equation does not seem to offer any advantage over that adopted here, which itself has the advantage that cube roots are easily available.

Equation (8) cannot be extrapolated beyond the range of the experimental results if the object is to obtain ρ_{V} since very large errors (and sometimes negative values) arise. Young ${ }^{4}$ included a cubic term in his equation for the dependence of ($\rho_{V}+\rho_{L}$) on temperature for alcohols, this has not been done here because the present results are not sufficiently precise to justify the introduction of another term.

[^4]Table 3.
Orthobaric densities of alcohols.

Temp. (c)	$\begin{gathered} \rho_{L} \\ \text { obs. } \end{gathered}$	ρ_{V} obs. Prop	$\begin{gathered} \rho_{L}-\rho_{V} \\ \text { obs. }-\mathrm{cal} \end{gathered}$	$\begin{aligned} & \rho_{L}+\rho_{V} \\ & \text { obs. - calc. } \end{aligned}$	Temp. (c)	$\begin{gathered} \rho_{L} \\ \text { obs. } \end{gathered}$	PV obs.	$\begin{aligned} & \rho_{L}-\rho_{V}{ }_{c} \\ & \text { obs. }- \text { calc } \\ & \text { yl } \end{aligned}$	$\rho_{L}+\rho_{V}$ obs. - calc.
$\begin{array}{llllll} \\ 141.65\end{array} 0.68850 .0091-0.0015 \quad 0.0008$					134.12°	$0 \cdot 6605$	$0 \cdot 0146$	0	$0 \cdot 0019$
154.18	$0 \cdot 6700$	0.0135	-0.0025	$0 \cdot 0009$	$149 \cdot 18$	0.6353	$0 \cdot 0193$	$0 \cdot 0007$	-0.0004
165.85	0.6533	0.0173	-0.0011	$0 \cdot 0006$	$163 \cdot 23$	$0 \cdot 6104$	0.0278	0.0001	$0 \cdot 0004$
176.93	0.6350	$0 \cdot 0220$	-0.0013	-0.0008	$170 \cdot 57$	$0 \cdot 5957$	0.0332	-0.0007	0.0003
186.29	$0 \cdot 6204$	0.0270	$0 \cdot 0006$	$0 \cdot 0004$	177.55	0.5815	0.0389	-0.0005	0.0006
192.77	$0 \cdot 6077$	0.0314	-0.0005	-0.0003	$185 \cdot 30$	0.5640	0.0456	-0.0002	-0.0004
201.01	0.5923	0.0384	-0.0009	$0 \cdot 0009$	191.98	0.5480	0.0535	-0.0006	0.0001
$20.6 \cdot 40$	$0 \cdot 5816$	0.0413	$0 \cdot 0014$	-0.0005	$196 \cdot 69$	0.5357	0.0597	-0.0008	0
$225 \cdot 12$	0.5376	0.0618	$0 \cdot 0018$	-0.0009	201.74	0.5222	$0 \cdot 0669$	-0.0001	-0.0001
232.54	0.5166	0.0742	$0 \cdot 0006$	-0.0004	207.25	$0 \cdot 5055$	0.0762	0.0001	-0.0003
$240 \cdot 11$	$0 \cdot 4992$	0.0885	$0 \cdot 0079$	$0 \cdot 0061$	$213 \cdot 19$	$0 \cdot 4852$	$0 \cdot 0888$	-0.0002	-0.0002
245.33	$0 \cdot 4724$	$0 \cdot 1034$	-0.0017	$0 \cdot 0010$	$218 \cdot 05$	$0 \cdot 4658$	$0 \cdot 1029$	-0.0022	0.0009
$250 \cdot 22$	$0 \cdot 4499$	$0 \cdot 1187$	-0.0030	0.0002	$222 \cdot 64$	$0 \cdot 4418$	$0 \cdot 1196$	-0.0068	-0.0006
254.61	0.4267	$0 \cdot 1357$	-0.0016	-0.0004	227.28	$0 \cdot 4165$	$0 \cdot 1389$	-0.0041	-0.0004
$256 \cdot 69$	$0 \cdot 4127$	$0 \cdot 1474$	-0.0026	$0 \cdot 0001$	$231 \cdot 07$	$0 \cdot 3849$	$0 \cdot 1660$	-0.0061	0.0001
					233.53	$0 \cdot 3493$	$0 \cdot 1975$	-0.0132	-0.0006
Butyl					Isobutyl				
166.93	$0 \cdot 6694$	0.0142	-0.0002	0.0003	148.01	0.6775	$0 \cdot 0098$	-0.0030	0.0027
173.57	0.6538	0.0176	0.0006	$0 \cdot 0002$	$161 \cdot 25$	0.6594	0.0140	-0.0038	$0 \cdot 0024$
183.90	$0 \cdot 6401$	0.0203	0.0010	$0 \cdot 0002$	181.16	$0 \cdot 6297$	$0 \cdot 0211$	-0.0034	$0 \cdot 0008$
196.32	$0 \cdot 6279$	0.0238	-0.0006	-0.0005	186.40	$0 \cdot 6211$	0.0238	-0.0038	$0 \cdot 0003$
202.62	0.6182	0.0266	-0.0004	-0.0004	$193 \cdot 89$	0.6111	0.0254	0.0011	$0 \cdot 0001$
208.75	$0 \cdot 6087$	0.0283	0.0015	-0.0014	$203 \cdot 73$	0.5943	0.0317	$0 \cdot 0015$	0.0002
216.63	$0 \cdot 5950$	0.0341	$0 \cdot 0001$	-0.0004	213.94	0.5746	0.0397	$0 \cdot 0012$	-0.0003
226.57	$0 \cdot 5764$	0.0409	0	-0.0008	$223 \cdot 89$	0.5539	$0 \cdot 0490$	0.0013	-0.0005
235.08	0.5592	0.0482	-0.0004	-0.0006	$229 \cdot 31$	$0 \cdot 5416$	$0 \cdot 0553$	$0 \cdot 0007$	-0.0003
$242 \cdot 44$	0.5437	0.0563	0.0008	0.0007	$236 \cdot 17$	0.5239	$0 \cdot 0657$	-0.0017	0.0002
248.05	0.5314	0.0623	$0 \cdot 0004$	0.0012	$242 \cdot 15$	0.5088	$0 \cdot 0732$	$0 \cdot 0005$	-0.0004
256.95	0.5080	0.0740	0.0006	$0 \cdot 0003$	$248 \cdot 70$	0.4888	0.0852	-0.0002	-0.0010
260.90	$0 \cdot 4896$	$0 \cdot 0880$	-0.0140	0.0008	252.91	$0 \cdot 4743$	$0 \cdot 0965$	-0.0030	$0 \cdot 0008$
275.70	$0 \cdot 4365$	$0 \cdot 1224$	-0.0138	$0 \cdot 0008$	$262 \cdot 29$	$0 \cdot 4313$	$0 \cdot 1275$	-0.0115	-0.0004
s-Butyl					t-Butyl				
134.08	$0 \cdot 6944$	0.0110	0	$0 \cdot 0016$	$146 \cdot 67$	0.6281	$0 \cdot 0217$	0.0001	0.0012
$150 \cdot 87$	$0 \cdot 6701$	0.0156	-0.0002	$0 \cdot 0003$	$160 \cdot 46$	$0 \cdot 6035$	0.0289	$0 \cdot 0008$	$0 \cdot 0004$
171.62	$0 \cdot 6377$	$0 \cdot 0239$	-0.0003	-0.0004	$174 \cdot 08$	0.5754	0.0395	-0.0009	-0.0005
$180 \cdot 40$	0.6233	0.0278	0.0008	-0.0008	183.05	0.5561	0.0474	-0.0001	-0.0008
188.20	$0 \cdot 6092$	0.0330	$0 \cdot 0002$	-0.0006	192.66	0.5330	0.0597	-0.0011	0.0004
$200 \cdot 10$	$0 \cdot 5871$	0.0418	$0 \cdot 0007$	0.0001	$200 \cdot 37$	0.5128	0.0701	0.0002	$0 \cdot 0005$
$205 \cdot 41$	0.5758	0.0462	-0.0002	-0.0012	$207 \cdot 41$	$0 \cdot 4905$	0.0835	-0.0014	0.0005
221.55	0.5390	$0 \cdot 0638$	0.0003	0					
231.24	0.5132	0.0777	$0 \cdot 0008$	0					

Constants in the equations.

$\begin{gathered} \rho_{L}+\rho_{V}=2 \rho_{c}+a\left(t_{c}-t\right)-b\left(t_{c}-t\right)^{2} \\ \rho_{L}-\rho_{V}=c\left(t_{c}-t\right)^{\frac{2}{3}}-d\left(t_{c}-t\right)^{2} \end{gathered}$									
Alcohol	$10^{3} a$	$10^{6} b$	c	10^{6} d	Alcohol	$10^{3} a$	$10^{6} \mathrm{~b}$	c	$10^{6} d$
Propyl	1.34	1.23	$0 \cdot 1410$	1.29	Isobutyl	$1 \cdot 20$	0.73	$0 \cdot 1368$	1.00
Isopropyl	1.33	0.72	$0 \cdot 1420$	1.53	s-Butyl	1.29	$0 \cdot 80$	$0 \cdot 1378$	0.74
Butyl	1.31	$1 \cdot 16$	$0 \cdot 1357$	1.28	t-Butyl	1.32	$0 \cdot 80$	0-1308	0.96

Discussion

Application of the Principle of Corresponding States.-Equations (7) and (8) for the orthobaric densities may be put in the reduced forms:

$$
\begin{equation*}
\left(\rho_{L}+\rho_{V}\right) / \rho_{c}=2+a^{\prime}\left(1-T_{r}\right)-b^{\prime}\left(1-T_{r}\right)^{2}, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\rho_{L}-\rho_{V}\right) / \rho_{c}=c^{\prime}\left(1-T_{r}\right)^{\frac{1}{2}}-d^{\prime}\left(1-T_{r}\right)^{2} \tag{10}
\end{equation*}
$$

3624 Thermodynamic Properties of Organic Oxygen Compounds. Part IX.
where T_{r} is the reduced temperature and $a^{\prime}, b^{\prime}, c^{\prime}$, and d^{\prime} are constants simply related to those given earlier. Equations with $a^{\prime}=2 \cdot 54, b^{\prime}=1 \cdot 0, c^{\prime}=4 \cdot 123$, and $d^{\prime}=1 \cdot 1$ fit all the experimental results with nearly as good accuracy as do the individually calculated equations and deviations of $\left(\rho_{L}+\rho_{V}\right) / \rho_{c}$ and ($\rho_{L}-\rho_{V}$) / ρ_{c} are no greater than ± 0.003. Young's values for ethanol are also fitted but those for ($\rho_{L}-\rho_{V}$) of methanol show a systematic deviation. It seems that orthobaric densities in general behave closely according to the corresponding-states principle but, for example, for hydrocarbons the coefficients of $\left(1-T_{r}\right)^{2}$ are smaller than for alcohols.

It is well known ${ }^{21}$ that vapour pressures do not follow the simple law of corresponding states. Refinements of the law have been suggested by Riedel, ${ }^{22}$ Rowlinson, ${ }^{23}$ and Pitzer, ${ }^{24}$ in which a parameter additional to the critical properties is introduced. The acentric factor, ω, of Pitzer, which is a measure of the departure of the vapour pressure of a substance from the behaviour of simple spherical molecules, ranges from 0.564 for methanol to 0.666 for isopropyl alcohol (i.e., in the region of the normal boiling point the vapour pressures are only about one-quarter of what would be expected according to the simple corresponding-states principle). Application of Pitzer's correlation reproduces the experimental vapour pressures between $T_{r}=0.66$ and $T_{r}=1$ with a maximum deviation of 8%.

Prediction of Critical Properties.-Application of these modified corresponding-states correlations to a substance requires a knowledge of its critical properties. These are frequently unknown, and much time has been devoted to the search for methods for their calculation; no method has more than a limited success because there is no direct relation between such macroscopic properties and molecular structure, but the study has a practical value provided its limitations are recognised.

The ratio of the absolute boiling point to the absolute critical temperature, T_{b} / T_{c}, is of value in predicting critical temperatures. For any series of compounds there is generally a rise in the ratio as the boiling point increases, and it was found earlier ${ }^{2}$ that the ratio for hydrocarbons could be accurately expressed by $T_{b} / T_{c}=x+y T_{b}$, where x and y are constants. The values for these alcohols do not follow such an exact relation but it appears probable that the values for straight- and slightly branched-chain primary and secondary alcohols above C_{4} may fall near the paraffin line [given by $T_{b} / T_{c}=0.51453+$ $\left.\left(4.6842 \times 10^{-4}\right) T_{b}\right]$. Of the eight alcohols (including methanol and ethanol) for which data are available, this equation gives the critical temperatures of five within $\pm 3^{\circ}$, the exceptions being methyl, isopropyl, and t-butyl alcohol.

Another way in which this ratio may be used is in a group-contribution method, such as has been worked out by Lydersen, ${ }^{25}$ according to which

$$
T_{b} / T_{c}=0.567+\sum \Delta_{T}-\left(\sum \Delta_{T}\right)^{2}
$$

where $\sum \Delta_{T}$ is the summation of the contributions from all the groups present in the molecule. This treatment gives results which are in fair agreement ($\pm 5^{\circ}$) with the experimental values, except that the predicted value for n-butyl alcohol is 6.7° low and that for isopropyl alcohol is $12 \cdot 2^{\circ}$ high. A similar procedure gives fair agreement with the experimental values for the critical pressures and critical volumes (Table 1).

It is of interest that the critical pressures of most materials are higher than those found by extrapolation of the appropriate low-pressure Antoine equation. The reverse is true for the alcohols: the critical pressures of methanol, ethanol, and the six alcohols

[^5]studied in this work fall into two groups; those in the first (methanol, ethanol, and the propanols) are $11-13 \%$ below the extrapolated values, and those in the second (butyl alcohols) are $5-6 \%$ below the extrapolated values. The different behaviour of the butyl alcohols suggests that in the alcohol series, members above C_{4} will show a progressive diminution of the effect of the hydroxyl group on physical properties, and that higher alcohols will behave more like non-hydroxylic materials in this respect.

We thank Mr. B. E. Broderick who carried out the experimental work and computations for the determination of orthobaric densities, and Dr. J. P. McCullough of the United States Bureau of Mines who provided the sample of fluorobenzene.

National Chemical Laboratory,
Teddington, Middlesex.

[^0]: ${ }^{1}$ Part VIII, Biddiscombe, Collerson, Handley, Herington, Martin, and Sprake, J., 1963, 1954.
 ${ }^{2}$ Ambrose and Grant, Trans. Faraday Soc., 1957, 53, 771; Ambrose, Cox, and Townsend, ibid., 1960, 56, 1452.
 ${ }^{3}$ Andrews, Phil. Trans., 1869, 159, 575.
 ${ }^{4}$ Young, Sci. Proc. Royal Dublin Soc., 1910, 12, 374.
 ${ }^{5}$ Kay, J. Amer. Chem. Soc., 1947, 69, 1273.
 ${ }^{6}$ Altschul, Z. phys. Chem., 1893, 11, 577.

[^1]: ${ }^{7}$ Hebert, McDuffy, and Secoy, J. Phys. Chem., 1958, 62, 431.
 ${ }^{8}$ Jüptner, Z. phys. Chem., 1913, 85, 1.

[^2]: - Barber, Handley, and Herington, Brit. J. Appl. Phys., 1954, 5, 41.

[^3]: 10 Kay and Donham, Chem. Eng. Sci., 1955, 1, 1.
 ${ }_{11}$ Silberberg, McKetta, and Kobe, J. Chem. Eng. Data, 1959, 4, 323.
 12 Bender, Furukawa, and Hyndman, Ind. Eng. Chem., 1952, 44, 387.
 ${ }_{13}$ Gornowski, Amick, and Hixson, Ind. Eng. Chem., 1947, 39, 1348.
 14 Connolly and Kandalic, J. Chem. Eng. Data, 1962, y, 137.
 15 Douslin, Moore, Dawson, and Waddington, J. Amer. Chem. Soc., 1958, 80, 2031.
 16 Benson and Copeland, J. Chem. Phys., 1955, 23, 1180.
 ${ }^{17}$ Frost and Kalkwarf, J. Chem. Phys., 1953, 21, 264.

[^4]: 18 Osborne and Meyers, J. Res. Nat. Bur. Stand., 1934, 13, 1.
 ${ }^{19}$ Shemilt, Esplen, and Mann, Canad. J. Chem. Eng., 1959 (8), 142.
 ${ }^{20}$ Jones and Bowden, Phil. Mag., 1946, 37, 480.

[^5]: ${ }^{21}$ Cope, Lewis, and Weber, Ind. Eng. Chem., 1931, 23, 887.
 ${ }^{22}$ Riedel, Chem.-Ing.-Tech., 1954, 26, 83.
 ${ }^{23}$ Rowlinson, Trans. Faraday Soc., 1954, 50, 647.
 24 Pitzer, J. Amer. Chem. Soc., 1955, 774, 3433.
 ${ }^{25}$ Lydersen, "Estimation of Critical Properties of Organic Compounds by the Method of Group Contributions," University of Wisconsin, Engineering Experiment Station, Report no. 3, 1955; quoted in extenso by Reid and Sherwood, "The Properties of Gases and Liquids, Their Estimation and Correlation," McGraw Hill Book Company Inc., New York, 1958.

